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Simplifying Kaufman'’s solution of the two-dimensional Ising model
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We considerably simplify Kaufman’s solution of the two-dimensional Ising model by introducing two
commuting representations of the complex rotation group 8Q{2 All eigenvalues of the transfer matrix and
therefore the partition function are found in a straightforward way.
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Since Onsager’s solutiofil] in the transfer matrix ap- m o n mon
proach[2] of the two-dimensional Ising modgB] with van- Ea=da2 X SuSuiisr Eb=3b2> 2 SuSuviis
ishing magnetic field and its subsequent simplification by p=lv=1 p=lv=1 !
Kaufman[4], there have been a number of related as well as @)
alternative solutions, see e.g., Baxter's book on exactlyyith g~1=kT. J, andJ, are temperature-independent inter-
solved models in statistical mechanifS| and references action energy parameters that we assume to be negative. We
therein. Among the transfer matrix solutions are the ones bygentify rows 1 andn+1 and columns 1 and+1, i.e., the
Schultz, Mattis, and Lieb, by Thompson, by Baxter, and bylattice is wrapped on a torus. Tte,, can take the values
Stephen and Mittaf]. Nevertheless, the author of this work + 1. The partition function is then given by
feels that there is still room for a nice and straightforward
solution. A completely self-contained and detailed account of
this work may be found if7].

We study the two-dimensional Ising model with zero
magnetic field on a square lattice withrows andn columns  with the definitionsa=— 8J, andb=—J,,. Z can be ex-
subject to toroidal boundary conditions. The transfer matrixoressed with the help of a"X2" transfer matrix T,
is expressed in terms of the generators of two commuting/(a,b)=TrT" with T defined by its elementss{, ;=s;),
representations of the complex rotation group SQ(J.
These representations naturally arise from projected bilinear

Z(a,b)=2 --- > exp—BE), )

S11 Smn

n

combinations of 2x 2" spin matrices. Conservatively speak- (m[T|7")= VHl expas,s, +bs,s, 1), (3)
ing, we reduce Kaufman’s approach to its essential steps,
avoiding in particular the doubling of the number of eigen—WhereTrM:{le, - Sunt for =1, ... m. We can splitT

values of the transfer matrix and subsequent rather involveghto a product of two matrices=V, V., definingV., andV,
arguments for the choice of the correct ones. Additionallyyy their elements

there is no need to investigate the transformation properties
of the spin matrices. n

Our notation is in the spirit of8], with sans serif capitals (mvi="y=1I expas,s.), (4)
reserved for 2x 2" matrices. The structure of this work is as v=1
follows. After defining the model and its transfer matiiix
we expresd in terms of 2'x 2" spin matrice,, Y,, Z,. ,
A rescpaled transfer matri¥ is dgﬁned whose eigenvalues (Ve 7") :Vll 95,5, OXADS,S,1). ®©
are, up to a trivial factor, the eigenvalues Bf We define
further spin matricesI’, and two commuting projection With the help of the Pauli matrices,, o, o,, and the 2
C|aSSGSJ:;B andJ;B of their bilinear combinations. After in- X 2 unit matrix1, we define Hermitian 2x 2" spin matrices
vestigating the relevant properties of tﬂ@ﬁ, we express/ by the direct products
in terms of them. We introducen2<2n matricesJ,,z; whose
algebra is identical to that af,, and define matricey ™ in v—1 n
terms of theJ,,; such that the relation bgtweaﬁ andJ,z X,=| ® 1|®0® ® 1], (6)
is closely related to that betwe&hand Jgﬁ. The result of =1 i1
the well-known diagonalization procedure for the" is
given and the analogy betweaf™ andV exploited for the
diagonalization oiV. The eigenvalues df and the partition
function are found explicitly.

The energy is given b¥E=E_+ E, with

n

and analogously fol, andZ, in terms ofo, and o, re-
spectively. Witha>0 defined by sinh@sinh(2)=1, we
can writeV.=[2 sinh(2)]"?V, with

n
V=[] expax,), 7
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and

n

Vp= Bl exp(bZ,Z,.1), ®)

where we have identified,,, ;=Z;. The transfer matrix may
then be expressed @s=[ 2 sinh(2)]"?V,,V, . Due to the cy-
clic property of the trace, we may rewrite the partition func-

tion (2) as
Z(a,b)=[2 sini2a)]™"2Trv™, 9)
whereV is defined by the Hermitian matrix
V=Va2VpVarp (10)
with
n

Vao=11 expax,/2)
v=1

(11)

so thatV2,=V,. If A, are the 2 eigenvalues o¥/, we have

on
Z(a,b)=[2 sinl‘(2a)]m”’2kzl AD. (12)
Our task is therefore to find the eigenvaluesvof
Define the 2 matrices ¢=1,...n)
Lop1=Xy - X242, (13
Iy, =X1 - X-1Y,, (14
which obey
{r,.r}=26,,. (15
Define further the matrix
Uyx=Xq- - Xy=i"T1Ty- - - Ty, Ui=1, (16)

which anticommutes with ever/,,, {I', ,Ux}=0. Now we
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bilinear combinationd”,I'5, see Eqs(16)—(19). This will
allow us to find two commuting algebras of projected bilin-
ear combinations of thE, . This will allow us to express in
terms of the elements of two commuting algebras of the pro-
jected bilinear combinations of tHe,.

With the help of the projectors

1
P*=35(1=Uy), (20)
define the matrices
i =+ =+
J“B:_Z[FQ’FB]' J;ﬁzpi\laﬁ, (21)
so that
Jop=dapt g, Uxdap=*0s. (22)

Since J,,=—J3,, there aren(2n—1) such independent
matrices of each kind;B andJ,;. It is straightforward to
show that their algebra decomposes into two commuting
parts,[J;B ,J,5]=0, which obey identical algebras

(305 955]1=1(80y g5t 0353y Oas Iy Opy Jas) ,(23)

Next note that with Eqs(17)—(19), (21), and (22) we can
write

X,=2(33,5, 1+32,0,-1), v=1,...n, (29
szv+l:Z(ng+l,2v+‘]gv+l,2u)' V:]" e 'n_]"

(25

ZnZy=—2Ux(I{ ;312 = —2(I{ 3= J12)-  (26)

This allows us to expresé,, from Eq.(11) andV,, from Eq.
(8) in terms of the,,

n

Vap= 1;[1 exqg(‘];vlv— 1+ 32,2015 VaVan (27

with

can write for the matrices appearing in the exponents of Eqs.

(8) and(11)

i
XV:_ E[FZV’FZV—].]' V:j., P O (17)
i
szv+1: - E[F2v+lvr2v]! v=1,...nh-1, (18)

i
ZnZlZEUX[FLFZn]- (19

n
+ .+
VE;/2= Hl exqa‘JEV,ZV*lL
=

So far our treatment has been rather similar to Huang’s writ&vith

up [8] of Kaufman’s approacf4]. Our subsequent treatment

rests on the observation that the formulat{@®) of V with
Egs.(8) and(11) involves only the produdty of all I', and

(28)
and
Vp=exf —2b(3} 5= Iy )]
n—-1
X 1;[1 exd2b(33,: 12,7 32,51.2,)]
ViV, (29
n—1
ngeXK:Zbezn)H exq2b‘]§1/+l 21/)' (30)
’ v=1 '
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The rescaled transfer matrixdefined in Eq(10) reads then

V=V*V~ with
V==V, V, Voo, [V7,VT]=0. (31
DefineNX N matricesJ,z by their elements
(Jap)ij= —1(8ai 65— 951 64j), (32

where Greek and Latin indices run from 110 SinceJ,z

=—Jga, there areN(N—1)/2 such independent matrices.

As can be easily checked, they obey the algeBBy, if we
set N=2n. Now consider the matrice$=exp(c,zl.pz),

wherec,; are arbitrary complex numbers. The matrices

form the group SOY,C) of complex NXN matrices with
S'=s!, detS=1.
Define the SO(8,C) matrices

V= :Va/ZVt;:VaIZ (33
with
n
Van= 1;[1 exp(adz, 2,-1) (34)
and
n-1
Vs =exp(F2bd1) [] exp(2b3z,12), (39

in analogy withV=, V,, andV, in Egs.(31), (28), and
(30). Sincea andb are real, the matrice¢,,, V, , andV=
are not only orthogonal, but also Hermitian, so ¥ have

only real eigenvalues and in each case a complete set of Vs =

orthonormal eigenvectors.

It is well known[4,8] how to diagonalize matrices of the

types V=. Applying similarity transformations Vg
=S, V*S;! with certain explicitly known matriceS. , one
obtains

ex;{ E Yiz- l}sz 2u— 1) (36)
with vy, defined by
_ ko
coshy,=cosh 2a cosh b— cos?smh 2a sinh 2b.
(37

We fix the sign ofy, by definingy,=2a for b=0 and then
analytically continuing to other values ob. For k
=1,...,2—1, this meang,>0. On the other hand, foy,
this means

yo=2(a—b). (39)

Our sign convention for they, and in particular fory, al-
lows us to treat ally, on an equal footing for bota>b and
a<b, i.e., irrespective of the temperature. Note that \tie
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are only block diagonal with 2 2 blocks. It would be trivial
to diagonalizeVg , but the form given by Eq(36) is most
convenient for our purposes.

It is straightforward to show that the matric8s are el-
ements of SOY,C) and may therefore be written &.
=exp(c,;J.p). Now use the same parameters; to define
the (2'x 2")-dimensional transformation matrix

S=Ss*s,

ST =expic,zlus), (39

and write

Vs=SVS 1=5,v*sSils v sil=vivg. (40
The factors defining/s in terms ofa, b, cﬁﬁ, and thed,,;
have the same structure as ¥ig in termsa, b, ¢, ;, and the

J.s- Now imagine using the Baker-Campbell-Hausdorff for-
mula[9]

exp(A)exp(B)= exp( A+B— %[B,A] + %{[A,[A,B]]

+[B,[B,Al]}+ - - - (41

to work out all products of exponentials Mg . Since the
Jaﬁ, J.p, andJ, gz obey identical algebras, the result is

n
ex ]}Zl 7{%5_%}J;V,2vl) d (42)
so that
n
VS eXF{ 1/21 (YZv—IJ;V,Zv—l+ ’y2v—2‘]2_v,2v—1)}
1 n
F{Z Zl Y2,-1(1+Ux) X,
1 n
+7 2, Ya-al- ux>xy} (43)

with the samey, as defined in Eq(37) and the subsequent
sign convention.

To diagonalizeVg, define another similarity transforma-
tion VY=RYVSR\71 with Ry and its inverse given by

n
RyI=2""2] (1=iv,). (44)
v=1

SinceRyX,Ry '=2,, this transformation take¥s into

066106-3



BORIS KASTENING PHYSICAL REVIEW E 64 066106

Vy=RyVsRy?! the indices €” and “ 0" in our result for the partition func-
tion,

- lé 1+U,)Z
—eng & Y1tz Z(a,b)=[2 sinh(2a)]™"?

m n
Ee eXl{E ;1 (i)7’2y—1)

=

" 21 Y2v—2(1=-Uz)Z, (45)

.[;

m n

+ exp(i > (i)yzyz)}

0 v=1
W|th UZ: Zl' . 'ZV. n m

The matrixVy is diagonal, but we still have to determine = _[2 sini2a) ]mH/Z[ H 2 COSyE Yoko 1”
its elementsU; is a diagonal matrix with elements1 and k=
—1 occurring in equal numbers. For each element holds, if no:
an even(odd) number ofZ, provides a factor-1, the matrix + H 2 Sinr(T 72k1”
element ofU; is +1 (—1). This meansi) a matrix element = 2
of (1+U3)/2 is 1(0) if an even(odd) number ofZ, provides i 0

2 COSV{E 72k2”

=

a factor—1, (ii) a matrix element of 1—U,)/2 is 1(0) if an

+
odd (ever) number ofZ, provides a factor—1. It follows k=1
that the 2 eigenvalues oW split into 2"~ eigenvalues of N
m
the form -1 |2 sin)‘(—ka_z J (48)
k=1 | 2
> 21 (i)yz,,_l) , (46)  The last term within the braces has a sign differing from that

in [4]. This is due to our different sign convention fgg.
IR The eigenvalues of are of course obtained by multiplying
and 2"+ eigenvalues of the form Eqs. (46) and (47) with the trivial factor[ 2 sinh(2)]"2.
n The results for the eigenvaluesdfand the partition func-
exp(l 2 (£)7s _2) (47) tion are the starting point for the analysis of the thermody-
2 =1 e namic properties of the two-dimensional Ising model, the
most interesting case being the thermodynamic limjn
where in the firstsecond case all sign combinations with an —o. Such analyses can now proceed as ussaé, e.g.,
even(odd number of minus signs occur. This is reflected by Refs.[1,4,8]) and will not be repeated here.

[1] L. Onsager, Phys. Re®5, 117 (1944).

[2] H.A. Kramers and G.H. Wannier, Phys. R&0, 252 (1941);

60, 263 (1941).

[3] W. Lenz, Phys. 7221, 613(1925; E. Ising, Z. Phys31, 253

(1925.
[4] B. Kaufman, Phys. Rew’6, 1232(1944).

R.J. Baxter, Ann. PhygN.Y.) 70, 193 (1972; M.J. Stephen
and L. Mittag, J. Math. Physl3, 1944(1972.

[7] B. Kastening, e-print cond-mat/0104398.

[8] K. Huang, Statistical Mechanigs2nd ed.(Wiley, New York,
1987.

[9] J.E. Campbell, Proc. London Math. S&8, 381 (1897; 29,

[5] R.J. Baxter,Exactly Solved Models in Statistical Mechanics 14 (1898: H.F. Baker,ibid. 34, 347 (1902: 3, 24 (1905; F.

(Academic Press, London, 1982 Hausdorff, Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-
[6] T.D. Schultz, D.C. Mattis, and E.H. Lieb, Rev. Mod. Ph$8s, Naturwiss. KI.58 19 (1906.

856 (1964); C.J. Thompson, J. Math. Phy§, 1392 (1965

066106-4



