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Simplifying Kaufman’s solution of the two-dimensional Ising model
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We considerably simplify Kaufman’s solution of the two-dimensional Ising model by introducing two
commuting representations of the complex rotation group SO(2n,C). All eigenvalues of the transfer matrix and
therefore the partition function are found in a straightforward way.
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Since Onsager’s solution@1# in the transfer matrix ap-
proach@2# of the two-dimensional Ising model@3# with van-
ishing magnetic field and its subsequent simplification
Kaufman@4#, there have been a number of related as wel
alternative solutions, see e.g., Baxter’s book on exa
solved models in statistical mechanics@5# and references
therein. Among the transfer matrix solutions are the ones
Schultz, Mattis, and Lieb, by Thompson, by Baxter, and
Stephen and Mittag@6#. Nevertheless, the author of this wo
feels that there is still room for a nice and straightforwa
solution. A completely self-contained and detailed accoun
this work may be found in@7#.

We study the two-dimensional Ising model with ze
magnetic field on a square lattice withm rows andn columns
subject to toroidal boundary conditions. The transfer ma
is expressed in terms of the generators of two commu
representations of the complex rotation group SO(2n,C).
These representations naturally arise from projected bilin
combinations of 2n32n spin matrices. Conservatively spea
ing, we reduce Kaufman’s approach to its essential st
avoiding in particular the doubling of the number of eige
values of the transfer matrix and subsequent rather invo
arguments for the choice of the correct ones. Additiona
there is no need to investigate the transformation prope
of the spin matrices.

Our notation is in the spirit of@8#, with sans serif capitals
reserved for 2n32n matrices. The structure of this work is a
follows. After defining the model and its transfer matrixT,
we expressT in terms of 2n32n spin matricesXn , Yn , Zn .
A rescaled transfer matrixV is defined whose eigenvalue
are, up to a trivial factor, the eigenvalues ofT. We define
further spin matricesGn and two commuting projection
classesJab

1 andJab
2 of their bilinear combinations. After in-

vestigating the relevant properties of theJab
6 , we expressV

in terms of them. We introduce 2n32n matricesJab whose
algebra is identical to that ofJab

6 and define matricesV6 in
terms of theJab such that the relation betweenV6 andJab

is closely related to that betweenV and Jab
6 . The result of

the well-known diagonalization procedure for theV6 is
given and the analogy betweenV6 and V exploited for the
diagonalization ofV. The eigenvalues ofV and the partition
function are found explicitly.

The energy is given byE5Ea1Eb with
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Ea5Ja (
m51

m

(
n51

n

smnsm11,n , Eb5Jb (
m51

m

(
n51

n

smnsm,n11 ,

~1!

with b215kT. Ja andJb are temperature-independent inte
action energy parameters that we assume to be negative
identify rows 1 andm11 and columns 1 andn11, i.e., the
lattice is wrapped on a torus. Thesmn can take the values
61. The partition function is then given by

Z~a,b!5(
s11

•••(
smn

exp~2bE!, ~2!

with the definitionsa52bJa andb52bJb . Z can be ex-
pressed with the help of a 2n32n transfer matrix T,
Z(a,b)5Tr Tm with T defined by its elements (sn11[s1),

^puTup8&5 )
n51

n

exp~asnsn81bsnsn11!, ~3!

wherepm5$sm1 , . . . ,smn% for m51, . . . ,m. We can splitT
into a product of two matricesT5VbVa8 , definingVa8 andVb

by their elements

^puVa8up8&5 )
n51

n

exp~asnsn8!, ~4!

^puVbup8&5 )
n51

n

dsns
n8

exp~bsnsn11!. ~5!

With the help of the Pauli matricessx , sy , sz , and the 2
32 unit matrix1, we define Hermitian 2n32n spin matrices
by the direct products

Xn5S n21

^

n851

1D ^ sx^ S n

^

n95n11

1D , ~6!

and analogously forYn and Zn in terms ofsy and sz , re-
spectively. With ā.0 defined by sinh(2ā)sinh(2a)51, we
can writeVa85@2 sinh(2a)#n/2Va with

Va5 )
n51

n

exp~ āXn!, ~7!
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and

Vb5 )
n51

n

exp~bZnZn11!, ~8!

where we have identifiedZn115Z1. The transfer matrix may
then be expressed asT5@2 sinh(2a)#n/2VbVa . Due to the cy-
clic property of the trace, we may rewrite the partition fun
tion ~2! as

Z~a,b!5@2 sinh~2a!#mn/2Tr Vm, ~9!

whereV is defined by the Hermitian matrix

V5Va/2VbVa/2 ~10!

with

Va/25 )
n51

n

exp~ āXn/2! ~11!

so thatVa/2
2 5Va . If Lk are the 2n eigenvalues ofV, we have

Z~a,b!5@2 sinh~2a!#mn/2(
k51

2n

Lk
m . ~12!

Our task is therefore to find the eigenvalues ofV.
Define the 2n matrices (n51, . . . ,n)

G2n215X1•••Xn21Zn , ~13!

G2n5X1•••Xn21Yn , ~14!

which obey

$Gm ,Gn%52dmn . ~15!

Define further the matrix

UX5X1•••Xn5 i nG1G2•••G2n , UX
251, ~16!

which anticommutes with everyGm , $Gm ,UX%50. Now we
can write for the matrices appearing in the exponents of E
~8! and ~11!

Xn52
i

2
@G2n ,G2n21#, n51, . . . ,n, ~17!

ZnZn1152
i

2
@G2n11 ,G2n#, n51, . . . ,n21, ~18!

ZnZ15
i

2
UX@G1 ,G2n#. ~19!

So far our treatment has been rather similar to Huang’s w
up @8# of Kaufman’s approach@4#. Our subsequent treatmen
rests on the observation that the formulation~10! of V with
Eqs.~8! and~11! involves only the productUX of all Gn and
06610
-

s.

te

bilinear combinationsGaGb , see Eqs.~16!–~19!. This will
allow us to find two commuting algebras of projected bili
ear combinations of theGn . This will allow us to express in
terms of the elements of two commuting algebras of the p
jected bilinear combinations of theGn.

With the help of the projectors

P6[
1

2
~16UX!, ~20!

define the matrices

Jab52
i

4
@Ga ,Gb#, Jab

6 5P6Jab , ~21!

so that

Jab5Jab
1 1Jab

2 , UXJab
6 56Jab

6 . ~22!

Since Jab
6 52Jba

6 , there aren(2n21) such independen
matrices of each kindJab

1 and Jab
2 . It is straightforward to

show that their algebra decomposes into two commut
parts,@Jab

1 ,Jgd
2 #50, which obey identical algebras

@Jab
6 ,Jgd

6 #5 i ~dag Jbd
6 1dbd Jag

6 2dad Jbg
6 2dbg Jad

6 !.
~23!

Next note that with Eqs.~17!–~19!, ~21!, and ~22! we can
write

Xn52~J2n,2n21
1 1J2n,2n21

2 !, n51, . . . ,n, ~24!

ZnZn1152~J2n11,2n
1 1J2n11,2n

2 !, n51, . . . ,n21,
~25!

ZnZ1522UX~J1,2n
1 1J1,2n

2 !522~J1,2n
1 2J1,2n

2 !. ~26!

This allows us to expressVa/2 from Eq.~11! andVb from Eq.
~8! in terms of theJab

6 ,

Va/25 )
n51

n

exp@ ā~J2n,2n21
1 1J2n,2n21

2 !#5Va/2
1 Va/2

2 ~27!

with

Va/2
6 5 )

n51

n

exp~ āJ2n,2n21
6 !, ~28!

and

Vb5exp@22b~J1,2n
1 2J1,2n

2 !#

3 )
n51

n21

exp@2b~J2n11,2n
1 1J2n11,2n

2 !#

5Vb
1Vb

2 ~29!

with

Vb
65exp~72bJ1,2n

6 !)
n51

n21

exp~2bJ2n11,2n
6 !. ~30!
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The rescaled transfer matrixV defined in Eq.~10! reads then
V5V1V2 with

V65Va/2
6 Vb

6Va/2
6 , @V1,V2#50. ~31!

DefineN3N matricesJab by their elements

~Jab! i j 52 i ~da idb j2db ida j !, ~32!

where Greek and Latin indices run from 1 toN. SinceJab
52Jba , there areN(N21)/2 such independent matrice
As can be easily checked, they obey the algebra~23!, if we
set N52n. Now consider the matricesS5exp(icabJab),
where cab are arbitrary complex numbers. The matricesS
form the group SO(N,C) of complex N3N matrices with
ST5S21, detS51.

Define the SO(2n,C) matrices

V65Va/2Vb
6Va/2 ~33!

with

Va/25 )
n51

n

exp~ āJ2n,2n21! ~34!

and

Vb
65exp~72bJ1,2n!)

n51

n21

exp~2bJ2n11,2n!, ~35!

in analogy withV6, Va/2
6 , and Vb

6 in Eqs. ~31!, ~28!, and

~30!. Sinceā andb are real, the matricesVa/2 , Vb
6 , andV6

are not only orthogonal, but also Hermitian, so theV6 have
only real eigenvalues and in each case a complete se
orthonormal eigenvectors.

It is well known @4,8# how to diagonalize matrices of th
types V6. Applying similarity transformations VS

6

[S6V6S6
21 with certain explicitly known matricesS6 , one

obtains

VS
65expS (

n51

n

g$2n21
2n22

%J2n,2n21D ~36!

with gk defined by

coshgk5cosh 2ā cosh 2b2cos
pk

n
sinh 2ā sinh 2b.

~37!

We fix the sign ofgk by defininggk52ā for b50 and then
analytically continuing to other values ofb. For k
51, . . . ,2n21, this meansgk.0. On the other hand, forg0
this means

g052~ ā2b!. ~38!

Our sign convention for thegk and in particular forg0 al-
lows us to treat allgk on an equal footing for bothā.b and
ā,b, i.e., irrespective of the temperature. Note that theVS

6

06610
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are only block diagonal with 232 blocks. It would be trivial
to diagonalizeVS

6 , but the form given by Eq.~36! is most
convenient for our purposes.

It is straightforward to show that the matricesS6 are el-
ements of SO(N,C) and may therefore be written asS6

5exp(icab
6 Jab). Now use the same parameterscab

6 to define
the (2n32n)-dimensional transformation matrix

S5S1S2, S65exp~ icab
6 Jab

6 !, ~39!

and write

VS5SVS215S1V1S1
21S2V2S2

21[VS
1VS

2 . ~40!

The factors definingVS
6 in terms ofā, b, cab

6 , and theJab
6

have the same structure as theVS
6 in termsā, b, cab

6 , and the
Jab . Now imagine using the Baker-Campbell-Hausdorff fo
mula @9#

exp~A!exp~B!5expS A1B2
1

2
@B,A#1

1

12
$†A,@A,B#‡

1†B,@B,A#‡%1••• D ~41!

to work out all products of exponentials inVS
6 . Since the

Jab
1 , Jab

2 , andJab obey identical algebras, the result is

VS
65expS (

n51

n

g$2n21
2n22

%J2n,2n21
6 D , ~42!

so that

VS5expF (
n51

n

~g2n21J2n,2n21
1 1g2n22J2n,2n21

2 !G
5expF1

4 (
n51

n

g2n21~11UX!Xn

1
1

4 (
n51

n

g2n22~12UX!XnG , ~43!

with the samegk as defined in Eq.~37! and the subsequen
sign convention.

To diagonalizeVS , define another similarity transforma
tion VY5RYVSRY

21 with RY and its inverse given by

RY
61522n/2)

n51

n

~16 iYn!. ~44!

SinceRYXnRY
215Zn , this transformation takesVS into
6-3
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VY5RYVSRY
21

5expF1

4 (
n51

n

g2n21~11UZ!Zn

1
1

4 (
n51

n

g2n22~12UZ!ZnG ~45!

with UZ5Z1•••Zn .
The matrixVY is diagonal, but we still have to determin

its elements.UZ is a diagonal matrix with elements11 and
21 occurring in equal numbers. For each element holds
an even~odd! number ofZn provides a factor21, the matrix
element ofUZ is 11 (21). This means~i! a matrix element
of (11UZ)/2 is 1 ~0! if an even~odd! number ofZn provides
a factor21, ~ii ! a matrix element of (12UZ)/2 is 1 ~0! if an
odd ~even! number ofZn provides a factor21. It follows
that the 2n eigenvalues ofV split into 2n21 eigenvalues of
the form

expS 1

2 (
n51

n

~6 !g2n21D , ~46!

and 2n21 eigenvalues of the form

expS 1

2 (
n51

n

~6 !g2n22D , ~47!

where in the first~second! case all sign combinations with a
even~odd! number of minus signs occur. This is reflected
cs
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the indices ‘‘e’’ and ‘‘ o’’ in our result for the partition func-
tion,

Z~a,b!5@2 sinh~2a!#mn/2F(
e

expS m

2 (
n51

n

~6 !g2n21D
1(

o
expS m

2 (
n51

n

~6 !g2n22D G
5

1

2
@2 sinh~2a!#mn/2H )

k51

n F2 coshS m

2
g2k21D G

1)
k51

n F2 sinhS m

2
g2k21D G

1)
k51

n F2 coshS m

2
g2k22D G

2)
k51

n F2 sinhS m

2
g2k22D G J . ~48!

The last term within the braces has a sign differing from t
in @4#. This is due to our different sign convention forg0.
The eigenvalues ofT are of course obtained by multiplyin
Eqs.~46! and ~47! with the trivial factor@2 sinh(2a)#n/2.

The results for the eigenvalues ofT and the partition func-
tion are the starting point for the analysis of the thermod
namic properties of the two-dimensional Ising model, t
most interesting case being the thermodynamic limitm,n
→`. Such analyses can now proceed as usual~see, e.g.,
Refs.@1,4,8#! and will not be repeated here.
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